6 research outputs found

    Joint 3D Proposal Generation and Object Detection from View Aggregation

    Full text link
    We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. Our proposed architecture is shown to produce state of the art results on the KITTI 3D object detection benchmark while running in real time with a low memory footprint, making it a suitable candidate for deployment on autonomous vehicles. Code is at: https://github.com/kujason/avodComment: For any inquiries contact aharakeh(at)uwaterloo(dot)c

    Real-time 3D Object Detection for Autonomous Driving

    Get PDF
    This thesis focuses on advancing the state-of-the-art 3D object detection and localization in autonomous driving. An autonomous vehicle requires operating within a very unpredictable and dynamic environment. Hence a robust perception system is essential. This work proposes a novel architecture, AVOD, an ggregate iew bject etection architecture for autonomous driving capable of generating accurate 3D bounding boxes on road scenes. AVOD uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. AVOD is differentiated from the state-of-the-art by using a high resolution feature extractor coupled with a multimodal fusion RPN architecture, and is therefore able to produce accurate region proposals for small classes in road scenes. AVOD also employs explicit orientation vector regression to resolve the ambiguous orientation estimate inferred from a bounding box. Experiments on the challenging KITTI dataset show the superiority of AVOD over the state-of-the-art detectors on the 3D localization, orientation estimation, and category classification tasks. Finally, AVOD is shown to run in real time and with a low memory overhead. The robustness of AVOD is also visually demonstrated when deployed on our autonomous vehicle operating under low lighting conditions such as night time as well as in snowy scenes. Furthermore, AVOD-SSD is proposed as a 3D Single Stage Detector. This work demonstrates how a single stage detector can achieve similar accuracy as that of a two-stage detector. An analysis of speed and accuracy trade-offs between AVOD and AVOD-SSD are presented

    Robust Reinforcement Learning Objectives for Sequential Recommender Systems

    Full text link
    Attention-based sequential recommendation methods have demonstrated promising results by accurately capturing users' dynamic interests from historical interactions. In addition to generating superior user representations, recent studies have begun integrating reinforcement learning (RL) into these models. Framing sequential recommendation as an RL problem with reward signals, unlocks developing recommender systems (RS) that consider a vital aspect-incorporating direct user feedback in the form of rewards to deliver a more personalized experience. Nonetheless, employing RL algorithms presents challenges, including off-policy training, expansive combinatorial action spaces, and the scarcity of datasets with sufficient reward signals. Contemporary approaches have attempted to combine RL and sequential modeling, incorporating contrastive-based objectives and negative sampling strategies for training the RL component. In this study, we further emphasize the efficacy of contrastive-based objectives paired with augmentation to address datasets with extended horizons. Additionally, we recognize the potential instability issues that may arise during the application of negative sampling. These challenges primarily stem from the data imbalance prevalent in real-world datasets, which is a common issue in offline RL contexts. While our established baselines attempt to mitigate this through various techniques, instability remains an issue. Therefore, we introduce an enhanced methodology aimed at providing a more effective solution to these challenges
    corecore